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The n-BuLi-mediated ortholithiation of substituted arenes is 1
one of the most important reactions in organolithium chemistry. T N —
Not surprisingly, the mechanism of ortholithiation has been the 0 1 2 3 4 5 6 7
topic of considerable investigation and speculation as nicely [TMEDA] (M)
summarized in a recent communication by 3a@f the many Figure 1. Plot of kohsa VErsus [TMEDA] in pentane cosolvent for the

substrates available for investigation, anisdl¥ lfas been the disappearance df (0.01M) by n-BuLi (0.30 M) at 0°C. Each point is
perennial favorité-¢ Schleyer and Bauer studieeBuLi—anisole the average of three runs with standard deviatiesof <+10%. The
precomplexation using NMR spectroscopysaaand co-workers curve depicts the results of an unweighted least-squares fikjte=fax

as well as Schleyer and Bauer investigated the reaction coordinatet+ b (a = 4.3+ 0.2 x 1075 b = 3.90+ 0.05 x 1074

with semiempirical calculations? Slocum and co-workers

described solvent-dependent metalation ratedost recently, or 0.01 M) to ensure pseudo-first-order conditions. These
Stratakis reported inter- and intramolecular kinetic isotope effects. conditions also preclude the formation of substantial concentra-
Amidst the extensive mechanistic discussidahgre has yet to tions of mixed aggregates arising from incorporation of the ArLi
emerge a combination of spectroscopic and rate stugkeifying product!>*6 Decomposition ofi-BULi/TMEDA is not appreciable

the stoichiometry of the rate-limiting transition structure{&)le at 0°C. The TMEDA concentrations ([TMEDA{= 1.0 M —
describe herein rate studies of the ortholithiation of anisole by neat) were adjusted using pentane as the cosolVemhe rate
n-BuLi/TMEDA.8 In conjunction with previous spectroscopic  of n-BuLi-mediated lithiation of anisolel( eq 1) was determined
studies showing-BuLi/TMEDA®-1* to be exclusively disolvated
dimers @),'? the rate studies demonstrate that the ortholithiation

proceeds via [{-BuLi),(TMEDA)(anisole)f.1? OMe
: + 1/2

N
NMez. NMe, toluene / 0 °C OMe
_Liw

nBul->nBu —mMmM—

Then-BulLi (Fisher) was twice recrystallized from concentrated

pentane solutions at94 °C.1* Then-BuLi concentrations (- NMes {iMe, (Me;SiCl quench) R
BuLi] = 0.05-1.2 M) were maintained high relative tb(0.004
(1) Reviews: Snieckus, \Chem. Re. 199Q 90, 879. Gschwend, H. W.; 1 2 3R=Li
Rodriguez, H. ROrganic React1979 26, 1. 4 R = SiMey
(2) Saa J. M.; Martorell, G.; Frontera, AJ. Org. Chem1996 61, 5194. (1)

(3) Bauer, W.; Schleyer, P. v. R. Am. Chem. Sod.989 111, 7191.
(4) See ref 32 in Saal. M.; Deya P. M.; Suner, G. A.; Frontera, Al . o . ) ) )
Am. Chem. Sod992 114, 9093. by quenching individual reactions with chlorotrimethylsilane/

(5) Slocum, D. W.; Moon, R.; Thompson, J.; Coffey, D. S.; Li, J.; Slocum, ; i f ; g
M. G.; Siegel, A.; Gayton-Garcia, Retrahedron Lett1994 35, 385. Slocum, me.thylammé at dlffgrent tlme.s and monitoring the decrease of
D. W.; Thompson, J.; Friesen, Getrahedron Lett1995 36, 8171. anisole by GC relative to an internal dodecane stantfaithe

(6) Stratakis, M.J. Org. Chem1997, 62, 3024. disappearance of and appearance of displayed first-order
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by ethyliithium (EtLi) in benzene followed the rate law d[gEHs)/dt = k'- kinetics over >3 half-lives. The rate constants were nearly

[EtLi] Janisolel. Given the probability that EtLi is highly aggregated constant £10%) over a 20-fold range of [anisole], confirming
(tetrameric) under these conditions and the technical difficulties associated the first-order dependence on anisole. A substantial kinetic

with the experiments, we are not quite sure how to interpret these results. (b) j = i i
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25 a number of mechanisms involving either1® or (C=C)-Li
() interactions T and 8, respectively). In fact, we infer from
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Figure 2. Plot of kopsq Versus f-BulLi] in pentane cosolvent for the
disappearance df (0.01M) with an excess of TMEDA (2.M) at 0°C.
The curve depicts the results of an unweighted least-squares ¥ te f(
ax’ (a=1.51+ 0.04 x 1078 b = 0.97+ 0.06).

recent reports of Shimano and Meyers as well as Maggi and
Schlosser the existence of at least two fundamentally different
ortholithiation mechanisn®. Recent computational studies
then-BuLi concentrationKypss= k'[n-BuLi]%7°%) are consistent predicted a dimer-based lithiation to be p'?‘us.m“o‘{vev‘?f'
with the idealized rate law in eq 2 and the general lithiation none of the computations |nclude_the st0|ch|ometr_y implicated
. . by the rate law. This illustrates an important synergism of theory
mechanism described by eq 3. : . . : . ;
and experiment: theory can provide experimentally elusive details
while experiment places certain constraints on the theory.

We are currently investigating metalations mediated by other
n-BuLi—diamine combinations as well asBuLi in mixtures of
(n-BuLi),(TMEDA), + 1 — [(n-BuLi),(TM EDA)Z-l]jF —3 two diamines. NMR spectroscopic studies revealed a substantial

3) cooperativity in the solvation of the disolvataeBuLi reactant!
we are hoping that ortholithiations of anisole will shed light on

Implication of a dimer-based mechanism is interesting given cooperative solvation in théisolvatedtransition structures as well.
the recent discussions of open dimers (65} and triple ions
(e.g.,6)* as possible reactive intermediates. If one subscribes  acknowledgment. We thank the National Science Foundation for
to the notion that precomplexation is importdm:?2there exists direct support of this work.
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